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Abstract
Pre/post contracts for higher-order functions, as proposed by Find-
ler and Felleisen and provided in Racket, allow run-time verifi-
cation and blame assignment of higher-order functions. However
these contracts treat contracted functions as black boxes, allowing
verification of only input and output. It turns out that many inter-
esting concerns about the behaviour of a function require going
beyond that black-box approach, in order to control the actual com-
putation that follows from a function. Examples are prohibiting or
verifying that certain functions are called, checking access permis-
sions, time or memory constraints, interaction protocols, etc. To ad-
dress this need for grey-box verification, while preserving support
for higher-order programming and blame assignment, we introduce
the notion of computational contracts. A computational contract is
a contract over the execution of a contracted entity.

We show various applications of computational contracts, and
explain how to assign blame in case of a violation. Computational
contracts have been integrated with the existing contract system of
Racket. Computational contracts is the first contract model with
blame assignment in a higher-order setting that provides a system-
atic way to perform grey box verification.

1. Introduction
Design by contract [35] is a software correctness methodology
that is based on the principle of pre- and post-conditions to verify
certain functionalities of the program. Design by contract was first
popularised in the Eiffel [34] programming language and since then
adopted in many languages including C, C++, Smalltalk, Haskell,
Perl, Python, .NET4 and Scheme. Contracts have also been applied
in multithreaded object-oriented systems to coordinate groups of
objects [22]. Design by contract is currently the most requested
feature1 to be added to the Java language. Languages with support
for higher-order functions can not make use of traditional assertion
based contracts. Findler and Felleisen [12] have adapted assertion
based contracts to support higher-order functions.

In general the aim of contracts is to specify and verify well-
defined properties of a system. Beugnard et al [2] categorise con-
tract systems in four levels: syntactic (type systems), behavioural
contracts (pre/post conditions), synchronisation contracts (depen-
dencies between the provided services) and quality of service con-
tracts (e.g. time and space guarantees). We have found that con-
tract systems do not provide a general mechanism to verify the
contracted entity during its execution in a higher-order setting. We
propose a new mechanism that allows the programmer to define
and verify contracts over a function (and its possibly higher-order
arguments) while it is executing.

1 http://bugs.sun.com/bugdatabase/top25_rfes.do

A very simple example of the lack in expressiveness of current
contract systems can be observed when implementing a contract
that disallows a function to write to a file. In current systems it
requires the programmer to manually save the state of the file in
the precondition and later verify that the state of the file has not
changed in the postcondition. While this functionality on its own
requires a substantial amount of work, other functions might open,
write, and close files in the system concurrently. These writes are
possibly allowed and thus should be ignored when verifying the
postcondition. Implementing this kind of functionality with current
contract frameworks is very difficult. Even more importantly, the
verification of this particular contract in the (post-condition) is
too late i.e. the damage has already been done. Moreover current
contract systems do not allow the programmer to detect that a file
was read.

The core problem of current contract systems is that they treat a
contracted entity as a black box. Many aspects such as prohibit-
ing or enforcing certain method invocations, access permission,
time constraints, sending messages over the network, memory con-
straints etc. are well-defined properties of the computation of a cer-
tain function. However current contracts do not provide a struc-
tured and expressive mechanism to verify these aspects in a higher-
order setting. In this paper we present computational contracts, an
extension to the higher-order contract systems defined by Findler
and Felleisen [12]. Computational contracts tackle the problems of
current higher-order contract systems by also allowing grey box
verification of the contracted functions. We present various exam-
ples of computational contracts including mandatory function calls
and protocol contracts. We describe an expressive model to specify
and verify higher-order computational contracts, including proper
blame assignment. We have implemented2 computational contracts
in Racket and integrated them with the existing contract system.

We start our explanation of computational contracts by first
giving a small overview of Racket contracts, in Section 2. Then
we contrast the Racket contracts with computational contracts, in
Section 3. Examples of computational contract applications are
shown in Section 4. Subsequently we explain how computational
contracts are verified and how blame is assigned in Section 5. We
discuss interactions between computational contracts and existing
contracts in Section 6. Before concluding we survey related work
in Section 7.

2. Racket Contracts in a Nutshell
The Racket contract system is based upon Findler and Felleisen [12]
seminal work on higher-order pre/post contracts. It differentiates
between contracts defined over simple values, called flat contracts,
and contracts defined over functions dubbed functional contracts.
Functional contracts are of the form Cd → Cr where Cd is a

2 Available at http://tinyurl.com/5rzdzoo.
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1 (define/contract sqrt
2 (greater-than-zero? .→ . greater-than-zero ?)
3 (λ(x) ...))

Figure 1. Simple contract over the sqrt function.

contract over the domain of the function and Cr is a contract de-
fined over the range of the function. As the Racket contract system
supports higher-order pre/post contracts it allows Cd and Cr to be
either flat or functional contracts. We first show an example where
Cd and Cr are flat contracts followed by an example where Cd is
a functional contract. Finally we show an extension to higher-order
pre/post contracts that is expressive enough to verify certain quality
of service (QoS) contracts.

2.1 First-Order Function Contracts
The prototypical example of contract frameworks is that of a con-
tracted sqrt function. The purpose of the contract is to ensure that
the argument passed to the sqrt function is a positive number (pre-
condition) and that the result of the sqrt function is also a positive
number (post-condition). A possible specification of this contract
is shown in Figure 1. In the example there is one functional con-
tract defined over the function sqrt that is itself composed out of
two flat contracts. The flat contract over the argument of the sqrt
function greater-than-zero? verifies that the arguments passed
to the sqrt function is positive (left from the arrow). Similarly the
result of the function (after the arrow) must also pass the same flat
contract.

Programmers using contracts do so for two main reasons: doc-
umentation of the interfaces and to enforce the contract by letting
the contract system point out the responsible party in case of a vi-
olation. The process of figuring out who violated the contract is
called blame assignment [12]. For a long time researchers agreed
that assigning blame was simply a matter of determining where
the violation took place. If the pre-conditions are violated it is the
callers fault, if the post-condition is violated it is the callee’s fault
(the sqrt function in our example). However in the context of lan-
guages such as Ruby, Python or Scheme the use of higher-order
functions makes blame assignment more challenging.

2.2 Higher-Order Pre/Post Contracts
Higher-order pre/post contracts [12] were first introduced by Find-
ler and Felleisen. In their work they extend traditional contracts
so that they can be used in the context of higher-order functions.
The key idea behind blame assignment in the context of higher-
order functions is to postpone blame assignment of a functional
argument until that argument is applied. The reason for this in-
creased complexity is that in the general case it is not possible to
verify the contract defined over a functional argument in the pre-
conditions [36]. A simple higher-order pre/post contract function
is shown in Figure 2. The map-pos function expects a (positive)
function f and a list l and applies the traditional map function to
the function and the list. The contract defined over the function
map-pos specifies that the first argument must be a function that
expects a value greater than zero and returns a value greater than
zero. The second argument should be a list of integers, denoted
by (listof greater-than-zero?). Last, the contract specifies
that the return value of the function map-pos has to be a list of
positive integers.

During the execution of this function blame can be assigned
either to the caller of the map-pos or to the map-pos function
itself. In case that the function map-pos returns a value that is not
a list or a list that contains an element that is not a positive number,
blame is assigned to the map-pos function. Suppose module M1

1 (define/contract map-pos
2 (( greater-than-zero? .→ . greater-than-zero ?)
3 (listof greater-than-zero ?)
4 .→ .
5 (listof greater-than-zero ?))
6 (λ (f l) ... ))

Figure 2. Higher-order pre/post contract over the function
map-pos.

1 (define/contract sqrt
2 (greater-than-zero?
3 . →d .
4 (λ (arg)
5 (λ (res)
6 (and (greater-than-zero? res)
7 (<= (abs (− arg (∗ res res )))
8 0.01))))))

Figure 3. Sqrt contract, refined with a dependent contract.

imports the map-pos function from module M2. If M1 applies it
with a function that does not obey the contract, blame is assigned
to module M1. This is in contrast to naive assertion-based systems,
which would assign blame to M2, because the contract violation
was detected within the body of map-pos.

2.3 Dependent Contracts
Many contracts need to access some information in the postcon-
ditions which is only available when the contracted function is
applied. As this pattern is often seen in the construction of pre/-
post contracts, an extension called dependent contracts was pro-
posed [12] . Dependent contracts allow the argument values of a
contracted function to be captured when the contracted function is
applied in such a manner that it is accessible in the postcondition of
the contract 3. The canonical example of a dependent contract is a
refinement of the sqrt contract. On top of verifying that the result
of the sqrt function is positive it also verifies that the square of the
result is within a certain bound of the argument. The refinement of
the sqrt contract with a dependent contract is shown in Figure 3.
As can be seen in the contract, the postcondition of a dependent
contract is a lambda expression that receives the argument of the
contracted function and returns a regular postcondition contract. In
the postcondition the argument value is exposed and thus can be
used to verify that the square of the result of the sqrt is within
0.01 of the argument.

With dependent contracts we finish the quick overview of the
higher-order pre/post contract system in Racket. As can be ob-
served from the work on dependent contracts there is a need for
abstraction mechanisms that go beyond simple pre/post contracts.
In the next section, we present our extension to higher-order pre/-
post contracts, which allows the specification of contracts over the
actual computation of a function.

3. Computational Contracts: a First Look
A computational contract is a contract over the execution of a con-
tracted entity. In contrast to existing contracts, which treat a con-
tracted entity as a black box, a computational contract can ver-
ify well-defined execution points during the execution of the con-
tracted entity. Programmers can specify what has to happen or what

3 Because dependent contracts can capture arbitrary state they can be mis-
used to implement certain QoS contracts. However, this is not common
practice and the default resulting error messages are cumbersome for QoS
contracts.



1 (define/contract sqrt
2 (greater-than-zero?

3 .
!call(display)−−−−−−−−−→ .

4 greater-than-zero ?)
5 (λ(x) ...))

Figure 4. Example computational contract.

should not happen during the execution of the contracted entity.
Pre/post contracts do not allow the programmer to express con-
cerns like,“does the contracted entity reads a file”,“does it send
data over the network”, etc. With computational contracts we al-
low the programmer to express these concerns. Depending on the
level of expressiveness of the implementation of the computational
contract system, the programmer can intercept more or fewer exe-
cution points of the internal workings of the contracted entity.

A computational contract Cc over a function is denoted as fol-
lows, Cd

Cc−−→ Cr . The computational contract Cc is verified in the
dynamic extent of the execution of each function application. In or-
der to make this more concrete reconsider the sqrt function shown
in Section 2. This function should not display anything to the user.
With computational contracts this behaviour can be enforced by
specifying a contract over the sqrt function as shown in Figure 4.
The contract defined over the sqrt function again specifies that
the argument has to be a positive number and that the return value
has to be positive. In addition the computational contract, denoted
by !call(display), specifies that during the execution of the sqrt
function, display should not be applied. In case display is called
during the function application of the contracted sqrt function, the
sqrt function is blamed.

Prohibition of certain function invocations within the dynamic
extent of a function application is only one type of computational
contract. In the next section we show how to define and use more
advanced computational contracts in Racket.

4. Applications of Computational Contracts
Current pre/post contracts consider the function over which they are
defined as a black box. This reduces the expressiveness of pre/post
contracts to the verification of the argument and return-value(s)
of the contracted function. However, many functional and non-
functional requirements can only be expressed by verifying well-
defined execution points during the execution of the contracted
function. One example of such a requirement, to prevent a cer-
tain function to be applied, was described in Section 3. In this sec-
tion we show how to specify and use the computational contract
that verifies this requirement. Subsequently we show how to define
and use a computational contract that verifies mandatory function
calls. Next we show computational contracts that go beyond sin-
gle function applications. We show how to express computational
contracts that verify that the order of function applications within
a contracted function follows a usage protocol. Finally we show
how to implement computational contracts that can verify complex
usage protocols, such as output volume or memory consumption.

4.1 Prohibit Contracts
In order to specify a computational contract that prohibits a func-
tion to be applied during the execution of a contracted function,
the developer only has to specify which function call is disallowed.
With computational contracts prohibiting a function call is done by
generating a contract with the function prohibit/c. For example,
(prohibit/c (call f)) prohibits the function f to be applied
within the dynamic extent of the contracted function. Note that in

1 (provide/contract
2 [sqrt (prohibit/c (call display ))])

Figure 5. Using a prohibit contract to prevent the sqrt to apply
display.

1 (provide/contract
2 [map-pos
3 ((and/c
4 (prohibit/c (call display ))
5 (greater-than-zero? .→ . greater-than-zero ?))
6 (listof greater-than-zero ?)
7 .→ .
8 (listof greater-than-zero ?))])

Figure 6. Using the prohibit contract to prevent the argument to
the map-pos function to apply display.

this definition (call f) denotes applications of the function that
the variable f refers to.

Contracts are most effective at module boundaries [12]. The
Racket module system supports exporting functions and contract-
ing them at once by using provide/contract. This construct ex-
pects one or more lists where the first element is the function to
export and the second element the contract that is defined over the
exported function. In our examples all contracted functions are de-
fined in a file called "defs.rkt" and exported with a contract.
These functions are then applied from a different module in a file
called "uses.rkt". Computational contracts are tightly integrated
with the Racket contract system. For example the prohibit/c
function can be used to contract exported functions in Racket as
shown in Figure 5. In this example the function sqrt is exported
with the prohibit contract that ensures that the function display
is not applied. The prohibit contract assigns blame to the function
sqrt whenever the function display is applied in the dynamic
extent of the sqrt function.

The same prohibit/c contract constructor can also be used
to contract functional arguments. Let us revisit the example of
the map-pos function from Section 2.2 and add a prohibit con-
tract over the supplied function as shown in Figure 6. Combin-
ing the existing functional contract (greater-than-zero? .→ .
greater-than-zero?) with the computational contract is done
by making use of the standard and/c function of Racket. This func-
tion expects two contracts and produces a new contract that verifies
both contracts.

When using the contracted map-pos function correctly it be-
haves like any other function. A transcript that shows an example
where the function map-pos is applied to the increment function
and the list ’(1 2 3 4) is shown below. The result of this func-
tion is as expected the list ’(2 3 4 5).

1 Welcome to DrRacket , version 5.0.1 [3m].
2 Language: racket [custom]; memory limit: 128 MB.
3 > (map-pos add1 ’(1 2 3 4))
4 ’(2 3 4 5)

When the map-pos function is applied to a function that violates
the computational contract, i.e. applies display, blame is assigned
to the caller of the map-pos function. A transcript of this interac-
tion is shown below. Instead of the list ’(2 3 4 5) an error mes-
sage is presented. This error message shows that the violation was
caused by the file uses.rkt. As the transcript was taken from the
interaction window of the uses.rkt file, it can be easily deduced



that the blame is assigned to the call made from the prompt4. It is
important to note that blame is assigned when the argument func-
tion is applied in the body of the map-pos. When the contracted
function is applied it is in general not possible to determine that the
function passed as an argument will behave according to the con-
tract. This is also the main reason why blame assignment is needed
in the context of higher-order functions. Because violations can not
be detected when the contracted function is applied, verifying the
contract is postponed. When a violation is detected during the ex-
ecution of a contracted function, it is not always clear whether this
is the fault of the caller or of the callee. Blame assignment solves
this problem.

1 > (map-pos (lambda (x)
2 (display x) (+ x 1)) ’(1 2 3 4))
3 ...
4 (file uses.rkt)
5 broke the contract
6 (->

7 (and/c
8 (-> greater-than-zero? greater-than-zero ?)
9 prohibit-call-display)

10 (listof greater-than-zero ?)
11 (listof greater-than-zero ?))
12 on map-pos; computational contract violation ...

In DrRacket, the same error output is shown when evaluating
the uses.rkt file that contains the same code as typed into the
prompt. To pinpoint which line in the uses.rkt file caused the vi-
olation of the computational contract the stack trace can be used.
An excerpt of this stack trace is shown below. It reveals that the
origin of the violation was in the uses.rkt file on line 36, charac-
ter zero. Also shown in the stack trace is that this line contains the
call to the map-pos function.

1 .../ uses.rkt: 36:0
2 (map-pos (lambda (x)
3 (display x) (+ x 1)) ’(1 2 3 4))

Note that the function display was never applied. The blame
assignment of the computational contract stops the current evalua-
tion and prevents the function display to be applied completely.

4.2 Promise Contracts
The dual of prohibiting an action is to promise to perform an
action. A promise contract5 verifies that a certain promise is kept
during the dynamic extent of the contracted function. For example,
a function g can promise to apply another function f. Verifying a
promise contract is more subtle than verifying a prohibit contract
as blame can only be assigned after the contracted function returns.
Defining a promise contract with computational contracts is as
simple as defining a prohibit contract. Promise contracts are created
with the function promise/c. When applied to (call f) it returns
a promise contract that verifies that the function f is applied within
the dynamic extent of a contracted function.

To exemplify the use of a promise contract consider the function
display-average shown in Figure 7. This function takes a list of
numbers and displays the average of the list. It is exported with a
promise contract that assigns blame when the promise of applying
the function display is not held.

This function display-average correctly computes the aver-
age of the list passed as an argument. Unfortunately our contracted
function does not apply the function display. Therefore applying

4 The name prohibit-call-display in the error message is derived by
the contract system.
5 Not to be confused with promises as defined by Friedman et al. [14]

1 (define (display-average a-list)
2 (/ (foldl (lambda (x acc) (+ x acc)) 0 a-list)
3 (length a-list )))
4
5 (provide/contract
6 [display-average
7 (and/c
8 (promise/c (call display ))
9 (-> (listof integer ?) any/c)) ])

Figure 7. Exporting the function display-average with a
promise contract.

1 (define open-close-protocol
2 (protocol init
3 [init : ((call open-input-file)
4 -> more)]
5 [more : ((call close-input-port)
6 -> end)]
7 [end : accept ]))

Figure 8. Defining a protocol for opening and closing files.

the list ’(10 20) to the function display-average leads to a vio-
lation of the promise contract. A transcript of this example is shown
below. As highlighted in the transcript the function display-average
violates the promise-call-display contract.

1 > (display-average ’(10 20))
2 (file .../ defs.rkt)
3 broke the contract

4 (and/c
5 promise-call-display
6 (-> (listof integer ?) any/c))

7 on display-average;
8 computational contract violation ....

4.3 Usage Protocols
Computational contracts can also be used to verify that a usage
protocol is respected. Until now we have only considered com-
putational contracts where the application of a single function is
verified, i.e. constructed with (call f). In this section we show
computational contracts where the programmer describes a partial
specification of the path of applications a certain function should
or should not follow. In our implementation this path is expressed
by a finite state machine6. As shown in Figure 8, this finite state
machine describes which functions can be applied successively.

The protocol specifies that the end state can be reached after ex-
actly one application of the function open-input-file followed
by one application of the function close-input-port. Functions
that are not specified in the protocol can always be applied. For
example the application sequence open-input-file, display,
close-input-port leads to the end state.

When an application sequence does not follow the proto-
col blame is assigned. For example, the application sequence
open-input-file, close-input-port, open-inputfile is
not allowed as the end state does not allow any applications to
open-input-port.

Once a protocol is defined it can be used to create a computa-
tional contract with the promise/c function. When this function is
applied to a protocol it returns a new computational contract. The
resulting computational contract assigns blame to the contracted
function when the function applications in the dynamic extent of

6 We use a macro in the line of [28] to define the finite state machine.



1 (define (read-char-from-file filename)
2 (let ((port (open-input-file filename )))
3 (read-char port )))
4
5 (provide/contract
6 [read-char-from-file
7 (and/c (promise/c open-close-protocol)
8 (-> string? char ?))])

Figure 9. Defining a protocol contract over the
read-char-from-file function.

1 (define create-window-protocol
2 (protocol init
3 [init : ((call create-window)
4 -> more)]
5 [more : ((call create-window)
6 -> end)]
7 [end : accept ]))

Figure 10. Open windows protocol definition.

the contracted function do not obey the usage protocol. This hap-
pens when functions are applied in the wrong order or when the
finite state machine is not in the end state when the contracted func-
tion returns.

To exemplify the use of the open-close-protocol consider
the read-char-from-file function shown in Figure 9. This
function opens a file and reads one character from this file. The
read-char-from-file function is exported with a contract that
promises that the open-close-protocol is followed. Further it
is specified that the argument of the function should be a string
and the return value a char.

Applying the exported read-char-from-file function re-
sults in an error message as shown below. In the error message
we see that blame is assigned to the file defs.rkt. It is also spec-
ified that the violation was a promise-protocol/c contract vi-
olation. Further the error indicates that the finite state machine
was not in the end state and that the last application was the
open-input-file function. From this information it is easy for
the programmer to determine the root of the problem and adjust
the read-char-from-file function so that it closes the file after
reading.

1 (file .../ defs.rkt)
2 broke the contract
3 (and/c promise-protocol/c (-> string? any/c))
4 on read-char-from-file; promise-protocol /c
5 violated , not in end state , last transition
6 after ’open-input-file

A computational contract that prohibits following a protocol
can be created with the function prohibit/c. Such a computa-
tional contract assigns blame to the function over which it is de-
fined when the function applications in the dynamic extent of the
contracted function obey the usage protocol. This happens when
all function applications are applied in such an order that the finite
state machine reaches the end state. To show a use of a prohibit-
protocol contract consider the protocol shown in figure 10. This
protocol reaches the end-state after exactly two applications of
the create-window function. When applying this protocol to the
prohibit/c function it returns a contract that prohibits a function
to create more than one window. From the moment the contracted
function creates two windows it violates the prohibit contract be-
cause this application sequence leads to the end state of the finite
state machine.

1 (define (make-and-show-window filename)
2 ...
3 (create-window ...)
4 (create-window ...)
5 ...
6 )
7
8 (provide/contract
9 [make-and-show-window

10 (and/c (prohibit/c create-window-protocol)
11 (-> string? any/c))])

Figure 11. Defining a prohibit protocol contract over the
read-char-from-file function.

The function make-and-show-window shown in Figure 11,
expects a filename and shows the content to the user. In order
to make sure that this function does not create more than one
window it is exported with a prohibit contract: (prohibit/c
create-window-protocol). Using the function make-and-show-
-window leads to a violation of the prohibit contract as shown in
below.

1 (file .../ defs.rkt)
2 broke the contract
3 (and/c prohibit-protocol/c (-> string? any/c))
4 on make-and-show-window ; prohibit-protocol /c
5 violated , reached end state.

The use of protocols allows the programmer to express certain
quality of service contracts. For example, in order to avoid service
abuse the programmer can define a protocol that states that a func-
tion must be called at least twice and at most five times.

4.4 Usage Protocols with Context
The protocols shown in the previous section are stateless. However,
the verification of many concerns depends on a context or state,
which has to be updated during the execution of the contracted
function. For example verifying the memory consumption of a
function depends on the amount of memory that is allocated while
executing the function. With a state-protocol the programmer
can define protocols that pass a certain context value when moving
from state to state. Updating this context value often depends on
the arguments of the functions that are being monitored by the
protocol. For example when monitoring memory consumption, the
argument of applying the malloc function determines with how
much the context value should be increased. One application of
state-protocol contracts is the verification of quality of service
contracts during the execution of a function.

In order to make this more concrete, let us consider a computa-
tional contract that monitors the sound volume settings and verifies
that the sound volume is not increased above a certain threshold St.
In order to clearly illustrate the functionality of this contract con-
sider Figure 12. In this graph the sound volume setting over time
is depicted. As can be seen at a certain moment the function f is
applied. During the execution of function f the sound volume in-
creases (above St) however before the function returns, the sound
volume decreases again below the threshold. Because a computa-
tional contract can monitor the sound volume settings during the
execution of the function f, it can assign blame at the moment that
the sound volume is higher than St. Pre/post contracts are not able
to monitor such concerns. The only effect that they can measure is
the difference in sound volume between the start and the end of the
function application as discussed in Section 2.3.

Implementing the sound volume contract requires the intercep-
tion of the volume-up and volume-down functions while keep-
ing track of the increased sound volume. The protocol that ver-
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Figure 12. Sound volume contract violation.

1 (define sound-protocol
2 (state-protocol
3 (check 0)
4 [(check volume (< volume 100)) :
5 ((( call volume-up) up) ->
6 (check (+ volume up)))
7 ((( call volume-down) down) ->
8 (check (- volume down )))]))

Figure 13. Sound volume contract definition.

1 (define (increase-sound)
2 (volume-up! 20)
3 ...
4 (volume-up! 200)
5 ...
6 (volume-down! 150))
7
8 (provide/contract
9 [increase-sound (promise/c sound-protocol )])

Figure 14. Exporting the function increase-sound with the
sound protocol contract.

ifies this sound volume contract is shown in Figure 13. Unlike
previous protocols, the sound volume protocol is defined using
a state-protocol, because it needs to keep track of a context
value; in this case, the increased sound volume. The syntax of a
state-protocol is similar to the syntax of a normal protocol.
On line 3 of Figure 13 the sound protocol defines the initialisation
state. As a state-protocol keeps track of a certain context value
the initial state needs to be applied to an initial context value. In
this case, the start state is the check state and the initial context
value is the number 0. The start state, defined on line 4, binds the
context value to the variable volume and is guarded by the predi-
cate (< volume 100). When a transition to the check state passes
a context value higher than hundred blame is assigned. The check
state defines two transitions, one for when the function volume-up
is applied and one for when the function volume-down is applied.
When the volume-up function is applied to the value up the new
state is again the check state but during the transition the context
value volume is increased with up (line 6). Similarly when the
volume-down function is applied the context value is decreased.

In Figure 14 an example use of the sound-protocol contract is
shown. In this code the function increase-sound is exported with
the sound-protocol contract. Increasing the volume with two-
hundred results in a violation of the contract. Therefore, when ap-
plying this function the programmer is presented with an error mes-
sage as shown below. This error message shows that the function
increase-sound violated the computational contract when mov-
ing to the state check. From this error message the developer can
derive that during the execution of the function increase-sound
the volume was increased over the value 100.

1 (define (flat pred?)
2 (lambda (pos neg)
3 (lambda (val)
4 (if (pred? val) val (blame pos )))))
5
6 (define (ho dom rng)
7 (lambda (pos neg)
8 (lambda (f)
9 (if (procedure? f)

10 (lambda (argument)
11 ((rng pos neg)
12 (f ((dom neg pos) argument ))))
13 (blame pos )))))
14
15 (define (guard ctc val pos neg)
16 ((ctc pos neg) val))

Figure 15. Higher-Order pre/post contract constructors.

1 (file .../ defs.rkt)
2 broke the contract
3 promise-protocol/c
4 on increase-sound;
5 protocol computational contract violation
6 when moving to state check.
7 #<procedure :... defs.rkt :138:53 >

5. Contract Verification and Blame Assignment
In this section we show the inner workings of the computational
contract system by presenting a minimal implementation. As com-
putational contracts are an extension to higher-order pre/post con-
tracts, we first start with a detailed explanation of the higher-order
pre/post contract system. Readers who are already familiar with the
implementation of higher-order pre/post contract systems are still
encouraged to skim through this section in order to get familiar
with our notation. After the explanation of higher-order pre/post
contracts we show how to extend them in order to support compu-
tational contracts.

5.1 Flat and Higher-Order Pre/Post Contracts
The higher-order pre/post contract system implementation con-
sists of three functions, flat, ho and guard7. These functions are
shown in Figure 15. The function flat consumes a predicate and
creates a contract that verifies this predicate. Flat contracts are used
to contract simple values. The function ho creates a functional con-
tract given a contract for the domain and a contract for the range.
Finally the function guard creates contracted values. The first ar-
gument is a contract, created with either flat or ho. The second
argument is the value over which the contract is defined. Finally
the last two arguments are blame labels, i.e. textual representations
of the supplier and consumer of the contracted value. These labels
are passed to the contract in order to assign blame in case of a vio-
lation.

In order to get a better understanding of the contract verification
mechanism in combination with blame assignment consider the
example shown in Figure 16. In this example two functions fix10?
and neg are defined. The function fix10? takes a function and
verifies that 10 is a fixed point of the given function. The function
neg returns the negative value of integers passed as argument. The
example also shows the creation of two flat contracts, one with
the predicate positive? and one with the predicate boolean?.
Finally a new contracted version of fix10?, cf, is defined by
making use of the function guard, ho, and the newly created

7 We adopt the implementation as presented in [10].



1 (define (fix10? f) (= (f 10) 10))
2 (define (neg x) (display x) (* -1 x))
3
4 (define int? (flat positive ?))
5 (define bool? (flat boolean ?))
6
7
8 (define cf (guard (ho (ho int? int?) bool?)
9 fix10?

10 "fix10?"
11 "prompt"))

Figure 16. An example higher-order contract definition with the
minimal implementation.

flat contracts. This functional contract states that the argument
of fix10? is a function that takes a positive value and returns a
positive value. The contract also states that the function fix10?
returns a boolean value.

The function guard applies the higher-order pre/post contact
by passing the higher-order pre/post contract the blame labels and
the function fix10?. The result is a contract verification function
that behaves almost exactly the same as the function fix10? with
the difference that it verifies the domain (int?→ int?) and range
(boolean?) contract.

In our notation, wrapping a function into a contracted function
is represented by a box. Wrapping of the function fix10? into a
contracted function is represented as follows:

l1, l2| (int? → int?) → bool? | fix10?

where l1 and l2 are the blame labels textually representing the
supplier and the consumer of the contracted value respectively.

In order to show how blame assignment of contracted functions
works consider the following example of applying the contracted
version of fix10? to the function neg:

( l1, l2| (int? → int?) → bool? | fix10? neg)

Here l1 is the blame label of fix10?, and l2 is that of the prompt.
When the contracted function fix10? is applied it verifies the

domain contract, namely that the supplied function neg trans-
forms positive values into positive values. Because this can not
be checked immediately when fix10? is applied, the neg function
is wrapped into a new contracted function. Note that for this new
contracted function, the blame labels are swapped. An intuitive ex-
planation for this blame label swapping is that within the function
body of the function fix10? the prompt is the supplier of the func-
tion neg and the contracted function is the client. After wrapping
the function neg into a contracted function, the function fix10? is
applied as shown below:

(fix10? l2, l1| int? → int? | neg )

As shown in Figure 16, within the body of fix10? the function
neg is applied to the value 10. Since the argument is now a con-
tracted function, its domain contract is verified first:

( l2, l1| int? → int? | neg 10)

In this case the argument is a simple value (10) and the domain
contract int? verifies that this value is indeed a positive integer
value. As the supplied value, 10 in the example, passed the domain
contract, the function neg is applied and the return value (-10) is
verified by the range contract. This value does not pass the flat

1 (define (cc pc domain range)
2 (lambda (pos neg)
3 (lambda (f)
4 (if (procedure? f)
5 (lambda (argument)
6 (let (( verified
7 (( domain neg pos) argument ))
8 (result ’()))
9 (deploy-fluid

10 (aspect pc (make-blame-advice pos))
11 (set! result (f verified )))
12 ((range pos neg) result )))
13 (blame pos )))))

Figure 17. Computational contract constructor.

contract int?. Therefore blame is assigned to the prompt, as the
prompt was the supplier of the function neg, which violated the
contract.

5.2 Computational Contracts Implementation
An important aspect of computational contracts is how to define
and intercept erroneous behaviour during the execution of a com-
putation. Therefore we have focused our effort to make this inter-
ception mechanism as separated form the contracted entity as pos-
sible. The characteristics of computational contracts have led us to
the use of aspect-oriented programming [27].

Aspect-oriented programming introduces a technique that al-
lows the programmer to modularise concerns that are normally
scattered throughout the code. As these concerns “cut through” the
code they are referred to as crosscutting concerns. Aspect-oriented
programming allows the specification of crosscutting expressions
in a modular way so that they are no longer scattered through the
code but localised in one place of the code. These modular cross-
cutting expressions are defined by the specification of additional
behaviour called advice on particular points in the programs execu-
tion called join points. The developer specifies on which set of join
points the advice has to be executed by specifying a pointcut.

In the implementation of computational contracts, the concepts
of pointcut and advice are used to specify at which point the
contract has to be verified. By using the techniques established in
aspect-oriented programming this can be done without having to
make any intrusive changes to the contracted entity.

In order to achieve the particular behaviour of only enforcing
the computational contract in the dynamic extent of the function
over which it is defined, dynamically-scoped aspects [8] are used.
Instead of being statically and globally defined at the start of the
program, aspects can be deployed only over certain parts of the
execution of the program.

In Figure 17, the computational contract constructor function
cc is shown. Note that this function is used to create prohibit con-
tracts. The first argument of this function is a pointcut that specifies
at which join points the contract is checked. The two last argu-
ments are the domain contract and the range contract. A compu-
tational contract verifies its contracted function very similarly to
how higher-order pre/post contracts are verified. The difference is
that after verifying the domain contract, a dynamic aspect is de-
ployed. The aspect intercepts violations of the computational con-
tract (with deploy-fluid8). Blame is assigned to the contracted
function when a matching join point is encountered in the dynamic
extent of applying the contracted function. The internal implemen-

8 In practice, we use LAScheme as a concrete aspect language for
Racket [42]. LAScheme is directly based on AspectScheme [8], but inte-
grates a number of improvements, such as execution levels [43].



1 (define cf
2 (guard
3 (ho (cc (call display) int? int?)
4 int?)
5 fix10?
6 "fix10?"
7 "Prompt"))

Figure 18. Minimal computational contracts in use.

tation of LAScheme makes use of preserved thread fluids (param-
eters) [16], in order to make sure that continuation capturing and
subsequent invocation of these continuations are handled correctly.
When there is no violation of the computational contract during
the execution of the contracted function the computational contract
behaves exactly like a higher-order pre/post contract.

5.3 Verification and Blame Assignment in Computational
Contracts Step by Step Example

In order to show the impact of computational contracts on the ex-
ecution of a contracted function let us revisit the example of the
fix10?, shown in Figure 16. However now the contract defined
over the argument function fix10? prohibits calls to display
during its execution as shown in Figure 18. In order to show how
blame assignment of computational contracts works, consider the
following example of applying the contracted function fix10? to
the function neg:

( l1, l2| (int?
!call(display)−−−−−−−−−→ int?) → bool? | fix10? neg)

When the contracted function fix10? is applied it verifies the
contract, namely that the supplied function neg does not apply the
function display. As explained before, this can not be verified
when the contracted function is applied. Therefore, the argument
is wrapped into a new contracted function. The contracted function
fix10? is applied to the contracted neg as shown below.

(fix10? l2, l1| int?
!call(display)−−−−−−−−−→ int? | neg )

Within the body of the fix10? function this contract-verification
function is applied to the value 10. This results in verifying the do-
main contract int?, as in the previous example the value 10 passes
this contract. Finally the computational contract is applied.

( l2, l1| int?
!call(display)−−−−−−−−−→ int? | neg 10)

Applying the computational contract corresponds to deploying
a dynamic aspect. The active pointcut is shown in superscript
(!call(display)) and the responsible to blame in subscript (l2).:

(neg 10)
!call(display)
l2

In this example the function neg violates the computational con-
tract by applying the function display. This results in the pointcut
to match and the blame advice to be executed. The blame in this
case is assigned to the prompt. This is correct because the prompt
supplied the function neg which does not obey the contract.

6. Discussion
We now discuss some subtleties that arise in the interaction be-
tween computational contracts and existing contracts.

1 (define (process f) ... (f 4) ...)
2 (define (remove path) ... )
3
4 (provide/contract
5 [process (prohibit/c (call remove ))]
6 [remove (-> string? boolean ?)])

Figure 19. Example where a computational contract and a pre/post
contract can be active over the same function.

6.1 Blame Precedence
It is possible that a function is subject to verification by both a
computational contract and a pre/post contract at the same time. In
that case, the question of which has precedence appears.

To clarify this, consider the code example show in Figure 19.
There are two functions defined, process and remove. For the
discussion it is sufficient to know that process applies the function
f given as argument and that the function remove destructively
deletes a file from the harddisk. Both functions are exported with a
contract. process has a computational contract that prohibits the
function remove to be applied. The function remove has a higher-
order contract that states that the arguments of the function remove
should be a string and that the return value should be a boolean.

Let us consider that the exported function process is applied
to the exported function remove from the prompt. Remember that
exporting a function with a contract creates a new function that
acts and behaves almost exactly like the original function, with that
difference that the contract is verified. Following the notation in-
troduced in Section 5, the function process in that application is
represented as follows (l1 is the blame label for process, and l2
for the prompt):

l1, l2| (any/c
!call(remove)−−−−−−−−−→ any/c) | process

Similarly the function remove is represented as follows (l3 is the
blame label for remove):

l3, l2| (string? → boolean?) | remove

Applying the exported function process to the exported func-
tion remove results in the computational contract to be verified.
After deploying the computational contract the function body of
process is executed (line 1). In the body, the function argument f
is applied to the number 4. Graphically, we have:

( l3, l2| (string? → boolean?) | remove 4)
!call(remove)
l1

Note that the function remove is still contracted by the pre/post
contract (string? → boolean?). At the same time a computa-
tional contract that prohibits applications of the function remove
is also active (indicated in superscript). Evaluating either contract
leads to a violation. The question is: which contract has prece-
dence?

When precedence is given to the computational contract, blame
is assigned to the function process and a computational contract
violation is presented to the developer. For the developer it will be
clear that some piece of code attempted to remove parts of his hard-
disk while the contract clearly prohibits this. When precedence is
given to the pre/post contract, blame is assigned to the module
where the function remove was applied from. In this case the
developer is presented with a precondition violation as the function
remove is applied to a number instead of a string. A developer
presented with this error message could be tempted to correct this
error. Of course such an attempt would be futile as applications of



the function remove are prohibited by the computational contract
anyway.

In our implementation, by default, pointcuts like (call f) se-
lect applications of a function f, whether or not it is contracted; un-
der the hood, it relies on Racket’s equals? function, which makes
equality oblivious to contracts. This means that in the previous ex-
ample, the programmer would get a computational contract viola-
tion. We also provide a call-eq pointcut designator, which relies
on the low-level equality function eq?. In that case, the computa-
tional contract is not applied before the pre/post contract; hence the
programmer gets a precondition violation.

Finally, note that a function can also be subject to verification
by multiple computational contracts at the same time. In our im-
plementation we always give precedence to the computational con-
tract that has been deployed last. The reasoning behind this de-
cision is that in case of multiple applicable violations the com-
putational contract which is the “closest” to the violation will be
presented to the programmer. We have not yet encountered any
scenario where changing the precedence of the computational con-
tracts makes sense. However, it would not be hard to support cus-
tom precedence declarations.

6.2 Who will Guard the Guards?
An important aspect of contract systems is whether they assume
that the contracts themselves are trustworthy or not. Dependent
contract as described in Findler and Felleisen’s original paper [12]
do not enforce the domain contract defined over the arguments dur-
ing the evaluation of the postcondition. Dependent contracts thus
fall into the category of contracts where a contract is assumed to be
always correct. This was criticised by Blume and McAllester [3].
They extended the work on depended contracts so that the do-
main contract is enforced both in the precondition and in the post-
condition of the dependent contract. Blume and McAllester’s con-
tract system is dubbed picky while Findler and Felleisen’s original
dependent contracts are called lax. While picky contracts capture
more violations they do not assign blame to the contract. Recently
Dimoulas et al. [4] have further extended the picky blame assign-
ment. This system dubbed indy, treats the contract as an indepen-
dent party and in case that the postcondition violates the domain
contract, blame is assigned to the contract.

A very similar phenomena is observed when working with com-
putational contracts. During the verification of a computational
contract the pre/post contract might violate the computational con-
tract. An example of this is shown below.

( l1, l2| (printArgument → int) | foo 1)!call(display)

The precondition, printArgument simply allows any argument
to pass but also displays the argument. The computational con-
tract however disallows any application of the display function.
As of now, our implementation provides lax computational con-
tracts, as they would allow the above behaviour. Adapting the no-
tion of indy contracts to computational contracts is future work.

7. Related Work
Design by contract has been explored in a plethora of programming
languages and programming abstractions. Related work therefore
spans a number of different areas which we have categorised into
four topics. The first topic is about contract frameworks with di-
rect support for design by contract in a pre/post contract fashion.
The second topic is about QoS contracts, which allow more ex-
pressive contracts to be specified. The third topic is about grey box
verification techniques, which allow contracts to reason about the
execution of contracted entities. Finally we highlight how aspect-
oriented programming has been applied for contract verification.

7.1 Programming Support for Design by Contract
Contract frameworks have been around for a very long time but
the first appearance of pre and post-conditions can be found in the
work of Tony Hoare [23]. These ideas were first adopted and imple-
mented in the programming language CLU by Barbara Liskov [32].
Afterwards they were adopted in a wide range of programming lan-
guages but were mostly influenced by the programming language
Eiffel [33], which also introduced the term Design by Contract
(DbC). Ada supports DbC via pre-compiler statements for precon-
ditions and postconditions.

Many languages provide something similar to contracts with
special predicates called assertions. The difference between asser-
tions and contracts is that contracts apply restrictions on the bound-
aries of components whereas assertions can show up in arbitrary
positions in the code. Depending on the system these assertions are
verified at runtime or statically. When a violation of the assertion is
detected at runtime, an error is thrown, and it is up to the developer
to assign blame. Support for assertions is included in the C pro-
gramming language [26], and consequently C++ [40]. The .NET
Framework includes support for assertions in the debug class since
version 1.1. The first drafts of the Java language specification called
Oak already had support for assertions but they never made it into
the final specification. Only in version Java 1.4 [17] assertions were
added but a real DbC framework is still not in the main language.

The large number of external frameworks which provide addi-
tional support for DbC like JML [30], ContractJava [11], Hand-
shake [7], KJC [29], Jcontract [25] only confirms the high de-
mand for design by contract. Programming languages running on
the JVM including Groovy & Clojure also have implemented DbC.
DbC is supported by most popular scripting languages including
JavaScript, Ruby, Python,Tcl.

Functional programming languages have adopted support for
DbC, for example in OCaml with pre- and post conditions and in
Common Lisp via the meta object protocol. Finally there is a whole
line of work [3, 18, 19, 38] spawned from the higher-order contracts
as highlighted in section 5.1. While the wide range of programming
languages presented here clearly shows the need for DbC, all these
contract frameworks are basically pre/post contract systems and do
not allow the programmer to specify any constraints over the actual
computation.

7.2 QoS Contracts
In the component-based middleware community, contracts have
been incorporated in order to compose and adapt applications in
order to meet a certain quality of service. QoS frameworks such as
QuO [48], QML [15] and 2KQ+ [31], provide abstractions in order
to enforce a contract over the bindings between a client and a server
component. Depending on the implementation, a QoS contract ver-
ifies quality constraints such as latency, duration of a computation,
throughput etc. The contracts in such systems mainly describe how
the component should adapt itself depending on these quality con-
straints. The typical example of such frameworks is to switch be-
tween compressing an image when the connection is slow or send-
ing the uncompressed image when the connection is fast. The mon-
itoring of such QoS constraints can happen on the application of
certain functionalities of the component or during their execution.
Several QoS contracts have made use of aspect technology in order
to adapt the application according to the context [15, 20]. However
the focus of these contract systems is to adapt the application such
that a certain QoS can be offered. They do not verify the computa-
tion of the components themselves in order to assign blame in case
of a violation.



7.3 Grey Box Verification Techniques
There is a group of research frameworks that focuses on grey
box verification techniques. Similar to our work, these verification
mechanisms allow the programmer to define more expressive veri-
fication statements than simple pre/post conditions. Helm et al. [22]
and Holland [24] were among the first to use such advanced mech-
anisms. Their approach uses model programs in order to describe
contractual specifications, but they do not present a method for au-
tomatic conformance monitoring.

Shaner et. al. have extended JML for higher-order methods
(HOM) [37]. They define a higher-order method as any method
whose behaviour critically depends on one or more mandatory
calls. This approach focuses on static verification and does not
support higher-order contracts, i.e contracts over the argument val-
ues can not be specified. A related approach by Soundarajan and
Tyler [44] allows trace-based specifications but suffers from the
same limitations as Shaner’s system.

MaC [5] is a runtime verification system where program exe-
cutions points, such as the application of a function, are reified as
events. Over these events the programer can write rules in order to
verify the program execution. While it is likely that the expressive
power of the MaC system allows computational contracts to be de-
fined it has not been designed for higher-order functions. Blame
assignment is also not considered.

A very related approach by Fischer [13] introduces trace-based
assertions. These are similar in nature to the contracts for monitor-
ing the sound volume shown in Section 4.4. However trace-based
assertions do not support functional contracts to be defined over the
argument values of a function.

A remarkable contract system that goes beyond pre- and post-
conditions was recently proposed by Heidegger et al. [21]. They
propose access permission contracts, which allow programmers to
annotate methods with a set of read and write access paths. During
the execution of a contracted function the dynamic extent of the
contracted function can only read and write to those variable in
their access paths. Access permission contracts are a particular
instantiation of computational contracts and we plan to implement
them in our framework as future work.

Finally, Higher Order Temporal (HOT) Contracts [6] extend
prior higher-order contract systems to also express and enforce
temporal properties between modules. In their formalisation, mod-
ule behaviour is modelled as a trace of events such as function calls
and returns, which does not include internal module calls. This has
two major implications. First, the prohibit/c contract shown in
Figure 5 and similar contracts are not expressible with a HOT con-
tract because internal calls are not in the trace. Secondly, it is not
only important to check that a client respects a given protocol, but
also that a provider of the said protocol fulfils it. Because internal
module calls are not in the trace, HOT contracts do not verify that
the provider of their protocols fulfils it. This makes it possible to
define a module that internally violates its own HOT contract but
will never be blamed for it. With computational contracts all inter-
nal module applications are monitored.

7.4 Aspect-Oriented Programming and Contracts
Frameworks such as Barter [41], Jose [9] and Contract4J [46] have
used aspect-oriented programming as an implementation technique
in order to provide design by contract. Again these techniques do
not support blame assignment in the context of higher-order pro-
gramming languages. Several systems have added contracts for as-
pects [1, 39] where the focus lies on the definition of contracts
over an aspect. For example, Pipa [47] extends JML [30] to support
DbC for programs written with AspectJ. They do not focus on us-
ing aspects in order to verify certain properties of the computation.

Finally, Contract-Based Verification for Aspect-Oriented Refactor-
ing [45] uses aspects in order to specify contracts over refactorings.

8. Conclusion
Many aspects such as prohibiting or enforcing certain method in-
vocations, access permission, time constraints, sending messages
over the network, memory constraints etc. are well-defined prop-
erties of the computation of a certain function. However current
higher-order contract systems do not provide a structured and ex-
pressive mechanism to verify these aspects. The core problem of
current contract systems is that they treat a contracted entity as a
black box. In this paper we introduced the notion of computational
contracts. A computational contract is a contract over the execu-
tion of a contracted entity. In contrast to existing contracts, which
treat a contracted entity as a black box, a computational contract
can verify well-defined execution points during the execution of
the contracted entity. With computational contracts the developer
can define a functional contract that verifies a single event or a se-
quence of events during the execution of the contracted function.
The developer can specify that certain events should or should not
happen by making use of promise and prohibit computational con-
tracts respectively. We have shown the inner workings of a minimal
computational contract system by presenting the implementation
in Racket. Computational contracts is the first contract model with
blame assignment in a higher-order setting that provides a system-
atic way to perform grey box verification.
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